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Abstract - The MHED equilibria of helically symmetric,
current-carrving plasmas are investigated. Configurations
such as straight helical pinches or hiqgqh-B Stellarators
(vhere the plasema column 1is surrounded by a force=-free
region) are zonsidered in the sharp-boundary,
flat-pressure-profile approximation., The plasma current and
pressure can be larae. The appropriate boundary conditions
are imposed hy salving 3 self-consistent
double-free-boundary problem in the approximation of an
almost <circular, otherwise arhitrarv cross-section. The
helical field can be an arbitrary superposition of small
helical field components with different g-numbers and equal
vwinding period length. The plasma boundarv determines the
external currents or vice versa,

1. INTRODUCTION

The MHD equilibrium confiqurations of current-
carryvying, helically symmetric plasmas, such as those
contained 1in, for example, straight Stellarators or in
straight helical pinches, are investigated., If the discharge
takes place on a time scale longer than that required for
the magnetic field to diffuse throuqgh the wall, the latter
is not a magnetic surface, Wall stabilization »of €ast
oscillations 1is ©possible, however. All external currents
flow on the cylinder C (see Fig. 7).

In a previous paper (BARBERIOQO-COPSETTI, 1973), which
will be referred to with the abbreviation FP4E, the force-

free helical equilibhrium of a current-~arrving low-B (zero-




pressure) plasma contained in a straight g=2 Stellarator was
calculated.

We list here three cases, in order of increasing
complexity, which generalize the prohlen solved in FFHE:

1) low-P equilibrium: the plasma and current region 1is
delimited by the magnetic surface S tangent to the limiter
or wall (see Fig. 1), and the magnetic fields inside and
outside S have to match on S3

2) high-B (finite-pressure) equilibrium with plasma
current, flat pressure profile and sharp boundary: the
boundary condition involves the field and pressure
discontinuity at the boundary surface (GROSSHANN, 1872),
which is again a magnetic surface;

3) high-p plasma column with plasna current, flat
pressure profile and sharp boundary, surrounded by a low-3
region with plasma current {vhich may be important for
stability): there are two houndaries (see Pig. 1, the
magnetic surface S° (delimiting the high-[3 region) with a
jump condition, and the magnetic surface S (tangent to the
limiter or wall) with a field-matching condition.

Case 3 is reduced to the two preceding cases by
appropriately specializing the parameters. We shall
therefore solve case 3, and the solution can be specialized
to the two other cases. The resnlts of PFHE can thus Dbe
recovered as a particular solution of case 1.

Tn all three cases tha pressure profile is assumed to
be flat everywhere except for the jump at the boundary of

the high-B column. The whole configuration is force-free,



except for the bhoundary between the high- and low=B regions,
vhere the pressure discontinuity 1is balanced by surface
currents, A finite plasma current can be present in each
region, The field is given by UxB = sR, where s can be
assumed to bhe a constant 1in each region for the reasons
stated in Sec. 1 of FFHE, A force-free-field solution o9f the
type found in Sec., 2 of FFHE is thus valid in each region.
The solution is Pourier expanded in helical components, each
component being multiplied by an eigenfunction of the radius
and by a coefficient., The coefficients are to be determined
by imposing the appropriate boundary conditions.

The boundary conditions have to be 1imposed on free
plasma (magnetic) surfaces (see also Sec, 1 of PFHE), thus
confronting us with a self-consistent double-free-boundarv
problen, This is solved analyvtically (see Sec. U4) hy
applying the same method used in FFHE, viz. by assuming that
the z = const, sections of the boundarv surfaces S and 3°
{see Fig. 1) are approximately <circles centered on the
z-axis ({i.e. that the helical field is smaller than the main
straight field), and expanding to first order in the
deformation (i,e. in the ratio of helical to5 main field),
This approximation vyvields a separate system of linear
equations (see Sec, 5) foar the coefficients of each helical
or Fourier component of the solution field and of the
external currents (the latter are the known terms in the
equations) . Our solution is therefore valid for an arbitrary
superposition of small helical fields with different €ield

periodicity (Z-numbers), but with the same winding period




length. This implies that the boundary cross-sections can be
arbitrary, as long as the deformation from a circle is
small. For a finite deformation, or ratio of helical to main
field, the free-houndary prohlem is non-linear and cannot he
solved analytically: the solution is always of the form
{5.1), (5.2y, (5.3), but the coefficients have +95 he
calculated numerically, Our solution can be used as a
starting point for the numerical calculation in the
non-linear case,

The external currents (2.4), the vacuum field (2.2),
the solotion field (Sec. 3 of PFHE), the vacuum surfaces
(2.5) and those of the solution field (5.1}, (5.2), (5.3)
are Pourier expanded and their corresponding Fourier
components are proportional, The phase of each helical
component is arbitrary and independent of the others., In our
calculation the phases are omitted for simplicity, but the
phase of each helical component of the external current and
of the vacuum field can be shifted together with the phase
2f the corresponding term in the solution field with no need
of any other change.

The external currents are the known terms in the
equations for the coefficients (one system for each Fourier
component), Knowledge of the coefficients in the solution
for the field, i.e. of the plasma boundary, vields directly
the outside currents (see Sec. 5). This allows us to impose
a2 plasma Dboundary (which <can have an arbitrary almost
circular cross-section) and see what currents are needed to

obtain it, If, instead, the external currents are known, the



linear systems of equations can be solved to derive the
solution field and the plasma boundary from the outside
carrents, It 1is therefore possible to see hov plasms
boundaries and external current distributions are related to
one another, and how varyving one affects the other. The same
free-boundary method can be used with non-force-free fields
(CORREA and LORTZ, 1973, The plasma current and pressure
can be large and our solution is of practical interest,

HEIMER et al. (1970) considered the case of a small
current in the low-B region, and no current in the high-(B
region, WEITZNEP (1971) studied ¢the <zase of a long
vave~length, 2=1 equilibrium. NTEHRENBERG (1970), FPREIDBERG
and MABRDER (1971} and FREIDBERG {(1971) studied the 2=1
configuration, and PPEIDBERG (1973) the g£=2 case.

We recall some definitions and properties o€ vacuunm
helical fields in Sec., 2, and of MHD helical equilibria in
Sec. 3. In Sec. 4 we analyze the boundary - and fump
conditions, and in Sec, 5 we apply them to obtain the linear
systems of equations which give the coefficients in the

solution of case 3.

2, VACTUM HELICAL PIELDS
We use a cylindrical coordinate system (r, o, z), where
the z-axis coincides with the magnetic axis (see Fig. 2).
A1l the relevant guantities depend only on the radius r and
on
6 = g - az, (2.1

where a = 2n/L, and L is the period length (wave-length) of




the helical windings in the z-direction, For €=n, L is n
times the field=-period length.
The vacuum helical field (MORQZOV and SOLOV'EV, 1966,
p. 42-58) can be written in terms of Bessel functionss:
1
B.5.0585-tom 43:id pdli, (par).sin.ne, (2.2)
z a n n n
where the sum starts with n=1 and
n
B® = i, b = — a I® siny K7 {nalk). (2.3)

n 2 n n

This field is generated by the surface currents

i = 1i2 + i® siay, i = i®* cosY, i® = ¥ i® cos n@, (2.4)
@ z n on
which flow on the cylinder C (see Pig, 1), Here tgy = aA,

i® = nI®/2A4, i® = 19,4 = I® N/L, I® is the current in each
n n n

Z=n helical winding, I°® is the current in each main €ield
coil, d 1is the distance between main field coils, ¥ is the
number of main field coils per length L, A is the radius of
C. Any helical surface-current distribution on C can be
Fourier expanded by introducing phases in (2.4).

These currents can be carried by main field <coils and
helical windings, or by twisted coils (WORIG and REHKER,
1972), vound on the cylinder C, For any current distribution
{2.4) the geometry of the twisted coils is determined by the
equation

dz/d9 = A 1 /i° = g {8).
-

Integrating, we easily obtain z = g(8) = g(#-az), and, if

1agi<<1 and (ag'i1<<1, we can solve approximately z(d) =



g(N{1-ag" (& 1.

We have modified the formulae of MOROZOY and SOLOV'EY
(1966, p. 56=57) by introducing the factor cosY in (2.4) and
by setting U4n/c = 1 in our units (c.g.s. nom-rationalized
e.m.,u.). Our current unit is 10/4m ampere.

The vacuum-field magnetic surfaces are given by
¥ = const,, vwhere (see next section)

ar?2
$ =B — - r Eb I'{(nar) cos n#H. (2.5)

2 n n n

Since X' < 0, b and I# (2.3) have opposite signs.
n n n

Hence, as can be seen by expanding (2.5) for ar<<1, the
surface "bumps™ are found in correspondence to the helical
vwindings with the z-component of the current flowing
opposite to the main field. With, for example, a £=2 field
the surface (Eg. (2.6) and (5.1) of FFHE) is positioned with

respect to the helical windings as shown in Figq. 1.

3. HELICAL EQUILIBRIA
Ve recall here some properties of helical MHD
equilibria (SOLOV'EV, 1967).
Prom B = ¥xA, vhere A 1is the vector potential, wve
define the magnetic-field flux function, which describes the
magnetic surfaces:

# = A + ard = const.
z g

This is the component of A parallel to the helix ({2.1)
8 = const., (see Fig. 2) and it corresponds to the flux of B

between the helix and the z-axis,




From the definition of #% it follows that
1 @9 .1 ]
B = — —, B = arB = - —, (3.1)
T r 98 2 z ar

Prom ¥xB = J ve define the plasma-current flux function

I{#) = B ¢+ arB . (3.2
z 4

It follows that

arl - 8w/8r I + arov/or
B = - B s ’
& 1 + a?r2 z 1 +# a2r2
1 8T oI
J = = —, Jd = ard = = —y
T r 86 o z ar
J + arJd = =(1+a2c2) j+¢ + 2aI/(1+a2r2),
z -

vhere A* = (1/r) {8/3r(r/(1+a2r2) a@/0r ]} + {1/r2yd2/882,
Prom the equilibrium equation ¥P = JxB we have the
basic equation
A% + (172) (4I2/4e) /(1+a2r2) - 2al/(1+a2r?)2 +
+ dpsdw = 0, (3.3
vhere the functions P(W) and I(%#) <can he 1imposed
arbitrarily, They determine ¥, and together with ¢ all the
other quantities in the probleam. For the force-free field we
shall use the solution obtained in Sec. 3 of FFHE.
Adding the squares of the components of the magnetic
field B, we obtain
(1+32r2)B2 = (1¥¥12 &+ 12, (3.4)
If we integrate the equilibrium equation
¥ = JxB = (¥xB)xB = (B*¥)B - ¥B2/2
across a pressure discontinuity surface, ve obhtain the Hump

condition




[P}l +[B2}/2 = 0, (3.5)

vhere the square brackets indicate the discontinuity.
Revriting (3.4) in difference form and eliminating [R2)]
vith (3.5), we obtain the jump condition for a helically

symmetric equilibrium:

(19912] + [I2] + 2(1+a2r2)[P] = C. (3.6)
Here again, as in (3.3), P and I are arbitrary. At the
discontinuity ¢ and A are continuous bhut have a knee, P, I,
B, ¥¢ have a dump, ¥P, J, A*#, VI have a peak described by a

B-function.

4, THE BOMUNDARY CONDITIONS

AND THE .JUMP CONDITION
At a boundary S (between a region 1 with current and a
region 2 without current, see the following section) with no
pressure Jump the magnetic field components (3.1), (3.2)
inside and outside the magnetic surface S have to match., A

B, I are

and ¥ are continuous and smooth on S, while Vv,
continuous but have a knee, and J has a jump. As in Sec. 4

of PFHE, we Trequire I and ¥¥ to be continuous on S:

IC1)Y = T(2) (4.1
¥ (1Y /3 = 39(2)/9r (4.2)
Y1V /98 = 3IV(2) /339, {4.3)

The surface S is a free boundary, i.e. S itself is
determined by the solution to the problem. In order to solve
it, we assume that the sectisn of S is almost circular and
hence is described by r(8) = R ¢ ery (8), where e<<1, This

implies #(r, € = p(r) +# sq{r, 8). In this case the prohlen




is reduced to a system of linear eqguations for the
coefficients in the solution for % (see the following
sectiaon).

We expand (4.71), (4.2), (4.3) formally in s. Eq. (4.7
gives only one condition, of order 1, since I (3.2) is 13
constant on S. For a force-free field (¥xB(1) = sB(1)) with
s¢0 we have IC(1) = c(1) + s¢(1) (Fg., (2.7) of FFHE), and to
order 1

TC1)

It

cC1) ¢+ spl1), (4,6
For a vacuum field (s = C) see (5.4).
Eq. (4.2) to order 1 is
p(1)e = pC2)y L.

and to order s it can be written in the convenient form

gqC1[ 1log(qC1) /pC1) 1) ]' = qC2)[log(q¢2)/pC2)") ', (U.6)
as in Eq, (4.5.4) of FFHE. Here the prime means 4/dr, and
all quantities are calculated for r = R.

Eq. (4.3) gives only one condition, of order e:

g{1) = q(2), (.7
Since ry = -q/p', from (4.5) we see that (4.7) is also the
condition that S be a common surface for the two fields.,

our conditions on S are (4.71Y, (4.5, (4.8), (4.T).

At a boundary S° (between regions 0 and 1, both with
current, see the next section) with a pressure jump, the
magnetic field, i.e. both I and V¢, are discontinuous., I
approaches two different values ({constant on each surface)
on either side of 5°, and V¢ remains parallel to itself
across SO (Vy(°) = vVgC1)):

1€9)Y = 3I€1? 4,8




#¥(°) /31

Vaei 1) /or (4.9)

AN0) /386

Va1 /a8 (4.10)
where 1 and V are constant on S2, and 7V = v + sw(8).

The surface S° is also a free houndary anl we expand in
e as before, S° is described by r = R® ¢ er(8). We have
I€9) = c(9) 4 sO9(2) 3nd Eq.{(4.8) gives only one condition,
of order 1:

c(0).4 g0p(0). = uf{cl(1) ¢ 5pll)), u.11
Egq. {4.9) to order 1 is

p(oYes = ypC1ye, {4,12)

and to order s
q{o)' 4 pCOINLP = y(ql1)' + p(1I"rY) + ypC1)? {4.13)
where r§ = -q/p'. The prime. indicates dydr, and all

quantities are calculated at r = R? (< R).
The Jump condition (3.5) can also be expanded. Writing
{g) = g¢9) = g€1) for the discontinuity of each quantity g,
we have
(1-1/V2)179(°)12 + (1-1/u2)1C(2)2 + 2{1+a2c2)P = O,
wvhere [P] = P since the pressure is P = const, in region 0
and vanishes in region 1 (see the next section). To order 1
(1-1/v2)p(®)*'2 4 (1-1/u2)IC2)2 + 2(1+a2R°2)P = 0, (4. 14)
This relates u, v, P, To order e
{(w/v3)p(oI712 4+ (1=1/v2) (pCOI1q(OI1 — pOIN g(OY) 4
+ 2a2R%cgP = 0, (4.15)
Eliminating w between {4.13} and (4,15), we obtain
vq(®) {[1log (q¢®)/pCO)*) ' - 2a2R0p/p(0) 12} =
= q(1[ 1log(q{1d /plaidey e, {4, 16)

Eq. (4.10) vields only one condition, of order e, which
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is also the condition that S° be a common surface for the
two fieldss:

qlo) = yq1), {4.17)

Our <conditions on S92 are (4,11}, (4.12), {4.16),

(4.17 .

5. SRARP-RBOUNDARY HELICATL PINCH

Let us consider the configuration described as case 3
in Sec. 1. It consists of the following regions and
houndaries {(see Pig. 1):

0) a high-B, current-carrying, flat-pressure-profile
plasma column of constant pressure P. The boundary is the
magnetic surface S°, wvhere  surface currents balance the
pressure discontinuity. The field is force-free
{¥xB(®) = s9B(%)) and is given in Sec. 3 of PFHE in terms of

Bessel functions. The magnetic surfaces are given by

IC(0) = c(0) 4 5O04(O) = c0J° + s® ¥ c® (0] cos né, (5.1
n 1in n
vhere J? = J (s°r) + arJd (s°r),
o 1
{0] = [s°I (x°r) - ak®%r I'({k°r)¥/na?,
n n n
k02 = n232 = s02,

The sums in (5.1, (5.2), (5.3) start with n=1,

b} a low-B (zero-pressure) plasma region, whose
houndaries are S° and the magnetic surface S tangent to the
limiter or wall (a cylinder »f radius BR). Also in this
region there is plasma current. The field here is also
force-free (¥xBC(1) = sB(1)), is discontinuous at 5%, and is

also given in Sec., 3 of FFHE. The Y ani K terms have to be



added here owing to the currents flowing inside and on 359,

The magnetic surfaces are given by

IC1) = (1) 4+ 54€1) = o3 + ¢c'Y + s ¥ ¢ 1M cos né +
n 1n n
+ s, EFc' [1'] .cos a8, (532
n 1In n
where J = J (sr) + ard {(sr),
o 1
Y. =X st} #-ai¥ {sr),
] 1
{11 = {sI (kr) - akr I®'(kr) }/na?,
n n n
[A') = (8K {kr) = akr K'({Kkr) 1/ma?,
n n n
k? = n?az il Szo

2) a vacuum region (¥xB(2) = C) betveen the surface 5
and the cylinder C where the windings lie, The field is
described by Eq. (4.1) of PFHE, and the magnetic surfaces by

Zg. (4.3) of FPHE:

ar?2
¥(2) = BO —.__ - ¢ log(c/RY - r Eb TI'(nar) cos nd +
2 2 n n n
- ar ¥ ¢ K?'{nar) cos né8, {(5.3)
n 4n n

vhere B?, b are the vacuum-field coefficients (2.2), (2.,
n

{2.5). The 1log and K' terms are due to the currents flowing
inside S, For a vacuum field (s=0), I is a constant: from
(3.2) wve have

T(2) = B9 + ac ., (5.1
2

3) a vacuum region outside C (¥xB(3) = 0). The field is
described by Fq. (4.2) of FFHE:

B(3) = ¢c /r e + EC VK (nar) sin né,
2 .1 n ®n n
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vhere c = C + b I'(naA) /akK'(nah), and A is the radius
&n An nn n

of C,

Fq. (5.1, (5.2}, (5.3) are solutions o2f (3.3} with
I =c + s¥ (vhere s = s, s, C respectively) and P = const,
The coefficients in the RHS of (5.1), (5.2), (5.3) are
determined by the hourdary conditions, The Fourier
components of the currents (2.4) in *the external windings,
or, equivalently, of the vacuum field (2.2), are the known
terms in the equations and Adetermine the coefficients.
Conversely, knowledge of the coefficients (i,e of the field,
surfaces, boundary) yields the currents immediately. In this
case the equations are vieved as consistency relations which
limit the arhitrariness of the coefficients,

To order 1, from (4.1), (4.4), (5.4), and (8.5) on S
(r = R, and from (4.11), (4.12) on S° (r = R?), using
5.1, (5.2, (5.3), remembering that ¢fr, 9 = p(r) +

eq(r, €), we have the following linear system:

cd +$ C'Y - Cc a = BO
cd' /s + c'Y' /s + cz/R = aR3o
cud+ + cluY+ : - c0J0 =0
cydih/s ¢ccyvyYiyig -~«094%9%/382 = 0
vhere J = J {r = ®, J' = d4J/4r (r = ®),
J* =J (r = P9, J'+ = dJ/4dr (r = RO,
Y =Y (r =18), Y* = dvysdr (r = ®),
¥+ =Y (r = R9), Yt = QNLAT ¥ {0 A% " ROY;

Je = Jo(r = R9), J?Le=addeszdc i fpoa= RO

ey



Notice that dJ/Ar = sfard (sr) - J (sr) ). Analogous
s ] |

equalities hold for all the other J and Y terms. The

solution is

(§]
n

B2 (1+a2R2) (uY*J0'/s® - vY'+J9%/s) /R}

c* = =BO(1#a2R2) (uJ*JO'/s® - vJ'+J%/s)/R}

c = BO[(J'/s - aRJ) (vYI'*J%/5 -~ aY*+JO'/s50) +
2
+ (Y'/s = aRY) (ud+J°'/s° - vJ'+J%/5) /4
c® = =(BO/RJ) (1+a282) (uv/s) {2/n) (1+4a2R02) /RO

vhere J = (aJ'/s + J/R) (uY+J0'/s® - vY'+JO0/s) +
- (a¥'/s & Y/R) {(ud*Jov/s° - v JI'+J0/5),
In c© appears the Wronskian of (3.3) for I(1) = c1) + s¢(1)
{5.2), P = const,, and /88 = 0, in r = RO:
J+Yt+ - Jrey+ = (2/m) (1+a2RO2) /RO,

The constants c®2) (5,1) and <€(1) (5,2) are deternined
by the continunity of % on S° and S.

To order & we equate the Fourier components and for
each n, using (5.1, (5.2), (5.3), we have (4.17V, (4.16) on

SO (r = R%), and {(4.7y, (4.6 on S {r = B):

c® (0] - o -v[1]2. - gt y[ 1V]O =
1n 1p in
c® [0}y = c M2 - c' (1) =0
In 1p ip
¢ [1) et 1] + c aRK" = =b RI?
1n in 4n n
c N + c' (1} + ¢ AR{(KYK' = =-bH R(I)I?
in in 4n n
vhere [0] =T170] (r = R9,
n
f0y = {01 [ (drdr)log([0] 7(dJ°%/dr)} +
n n

- 2a2pop/(c2J°'/s% 2] (r = R?),

(1 Tofaldde 42 7oR)ers-[10.)c3 [ ;8055000
n n
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[EPA= [ )73 1= 0357 PN & (RNPD, (EsHER) 5

n n
{1 = {11 (d/dc¥logff 1) /[ (d/4dr) {(cd+c*'Y) 1} (r = R},
n n
{1y =171'] (d/dr)loa ([ 1] /[ (d/4r) (cJ+c'V) ]} (r = R),
n i
{(11° =101 (dr7drc)ylog(f1) /[ (d/4r) (cJ+c'Y) ]} (r = RO),
n n
£1'}1° = (1] (d7dr)loa [ 1') /[ {A/dr) (cJ+c'Y) ]} (r = RO),
n n
I'* = I {naR), ¥K' = KXK'(pnaWw),
n n
(I) = {d/dr)loa{rI* (nar)/(8%ar-c /r¥ ] (r = R),
n 2
(K) = (d/dr)logl ¥’ ({nar)/(R%ar-c /r)] {(r = R).
n 2

Substituting (5.2) and (5.3) in (4,.6) and (4.16) we have
used the fact that the latter are additive in gq. The

solution is

c®se=tbeREA (T} =K} L1219 = {A}9] 12 J0) /A0

c‘n = bnRI'[(I)-(Kl]([0]{1'}°/V sov (O 12 92) /"

c-lu =-bnRI'[(I\-fK}]({0]{1}°/v - V{0l 1]°) 74"

c:n = bnx'{([1*]{1\-(1'1)t£01(1}°/v = v{0}IC119)
n n

(E1HI) =Bl O NI 22 Ay [0} A2 19} ) 7R LAY
where X' =«{{ 1J(X) (N ALO-F(1} O/ =V [0} ]?) +
= (U1 Y- 1* 1Y (rojnoy/w - vi0ir11oy.

The solution thus found for the coefficients is valid
for b/B° = € << 1, and for any value 9of ar (2.1 . The
results obtained can be plotted numerically, or expanded for
ar = § << 1 1in order to continue the analysis. R, R®, r are
comparable, and a, s, s° are of the same order, Three
dimensionless parameters enter the problem: we expand t»o
first order in b/B°® = e to solve the free-bonndary problen,
the rather complicated result can then be expanded in ar = §
to obtain simpler expressions, while s/a remains €finite

throughout.
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List of symbols used:

beta

gamma

partial derivative
delta

capital delta

del (grad; Ve 4iv; ¥x curl)
epsilon

theta

pi

sum (capital sigma)
phi

psi
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Superscripts:
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